首页> 外文OA文献 >Beyond the Spectral Theorem: Spectrally Decomposing Arbitrary Functions of Nondiagonalizable Operators
【2h】

Beyond the Spectral Theorem: Spectrally Decomposing Arbitrary Functions of Nondiagonalizable Operators

机译:超越谱定理:谱分解任意函数   Nondiagonalizable运算符

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nonlinearities in finite dimensions can be linearized by projecting them intoinfinite dimensions. Unfortunately, often the linear operator techniques thatone would then use simply fail since the operators cannot be diagonalized. Thiscurse is well known. It also occurs for finite-dimensional linear operators. Wecircumvent it by developing a meromorphic functional calculus that candecompose arbitrary functions of nondiagonalizable linear operators in terms oftheir eigenvalues and projection operators. It extends the spectral theorem ofnormal operators to a much wider class, including circumstances in which polesand zeros of the function coincide with the operator spectrum. By allowing thedirect manipulation of individual eigenspaces of nonnormal andnondiagonalizable operators, the new theory avoids spurious divergences. Assuch, it yields novel insights and closed-form expressions across several areasof physics in which nondiagonalizable dynamics are relevant, includingmemoryful stochastic processes, open non unitary quantum systems, andfar-from-equilibrium thermodynamics. The technical contributions include the first full treatment of arbitrarypowers of an operator. In particular, we show that the Drazin inverse,previously only defined axiomatically, can be derived as the negative-one powerof singular operators within the meromorphic functional calculus and we give ageneral method to construct it. We provide new formulae for constructingprojection operators and delineate the relations between projection operators,eigenvectors, and generalized eigenvectors. By way of illustrating its application, we explore several, rather distinctexamples.
机译:可以通过将有限尺寸的非线性投影到无限尺寸来线性化它们。不幸的是,由于运算符不能被对角化,因此一个人经常使用的线性运算符技术常常会失败。这个诅咒是众所周知的。有限维线性算子也会发生这种情况。我们通过开发亚纯函数演算来规避它,该演算可以根据其特征值和投影算子分解非对角化线性算子的任意函数。它将正则算符的谱定理扩展到更广泛的一类,包括函数的极点和零点与算符谱一致的情况。通过允许直接操纵非正态和不可对角化算子的各个特征空间,新理论避免了虚假散度。这样,它在涉及不可对角动力学的几个物理领域中产生了新颖的见解和闭式表达式,包括记忆的随机过程,开放的非quantum量子系统和远离平衡的热力学。技术贡献包括对操作员任意权力的第一次全面处理。特别地,我们证明了以前仅在公理上定义的Drazin逆可以推导为亚纯函数演算中奇异算子的负一幂,并且给出了一般的构造方法。我们提供了构造投影算子的新公式,并描述了投影算子,特征向量和广义特征向量之间的关系。通过说明其应用,我们探索了几个相当不同的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号